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Abstract

We use a scattering matrix approach to simulate the transmission through a hexagonal Photonic

Crystal in the vicinity of the Dirac point. If the crystal is oriented so that the propagation direction

perpendicular to the surface corresponds to the ΓK direction, no oblique transmission is possible

for a very long (infinite) structure. For a finite structure with width, W, and length, L, the length

dependence of the transmission is given by Ttotal = Γ0W/L. For Ttotal all waves with a wavevector

parallel to the surface, kq = n2π
W

, described by a channel number, n, must be considered. We show

the transmission at the Dirac point follows the given scaling law and this scaling law is related

to the behavior of the individual channels. This leads to the establishment of a criterion for the

maximum length for this scaling behavior when the total transmission reaches a constant value.

We also compare this scaling behavior to the results in other frequency regions.

PACS numbers: 42.70.Qs,41.20.Jb,42.25.Bs
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I. INTRODUCTION

The simulation of two-dimensional Photonic Crystals (PC) with a hexagonal lattice has

so far primarily focused on studying the band gap, either to obtain the largest possible

gap1,2,3,4,5,6 or to study the impact of disorder on the width of the gap7,8,9,10 or wave-guiding

properties in such crystals.11 The transmission in the band regions was used to characterize

experimental samples12 or for studies of negative refraction.13,14,15,16,17,18,19 For a general

overview see review by Busch et al. and references therein.20

Recently, Raghu and Haldane pointed out that the K-point in the band-structure can

also be seen as the optical analogue to the Dirac point in graphene.21,22 At these points the

band-structure exhibits a conical singularity with a linear dispersion relation, as it occurs

in the Dirac equation. This offers the possibility to discuss many interesting effects of

this dispersion predicted in the electronic case for graphene,23,24 such as changes in the

conductance fluctuations25 and enhanced transmittance in the disordered case26,27 in a non-

interacting photonic system.

Around the Dirac point, a pseudo-diffusive transmission behavior characterized by a

scaling of the transmission proportional to W/L with the width, W, and length, L, of the

PC was predicted.28 This result was obtained in an analytic approach by discretizing the

incoming modes into channels with a spacing of the wavevector parallel to the surface, k
q
,

by ∆k
q
= 2π

W
and by using current conservation and symmetry relation in a transfer matrix

approach analog to a calculation for graphene.27,29 Numerical studies, using the multiple-

scattering Korringa-Kohn-Rostocker method30 or finite difference time-domain31 confirmed

the results. However, in both numerical approaches, only short crystals and only a small

number of lengths have been studied and the behavior of individual channels has been

ignored as well.

In this paper, we investigate the contribution of these channels and show there is also a

width-dependent upper length limit for the W/L scaling for long crystals associated with

the complete suppression of all channels except the 0th one with k
q
= 0.0. This behavior is

very important in understanding the predicted enhancement of transmittance at the Dirac

point in disordered Photonic Crystals.28

We use our own implementation of a Fourier-Modal method with a scattering matrix

approach, also known as Rigorous-Coupled Wave Analysis (RCWA),32,33 which allows us to
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FIG. 1: Structure. The shown example has a length of 3 unit cells and a width of 8. A plane

wave with an angle θ = 0 (perpendicular to the surface) propagates along the ΓK direction in the

band-structure. One unit cell in the propagation direction contains 2 rows of cylinders.

simulate crystals of arbitrary length, L, and to determine the limit on W >> L not discussed

in previous publications. Special care is taken of the correct Fourier-factorization rules to

ensure a fast convergence.34,35,36 This approach assumes incoming plane waves, defined by

a dimensionless frequency ω′ = ωa/2πc = a/λ and the angle θ to the surface normal (Fig. 1)

onto a periodic structure with lattice constant a.

The transmittance, T, for one frequency-angle pair through the structure is calculated

by summing over all propagating diffraction orders and adding up the magnitude of their

Poynting vectors. The same holds for the reflectance, R, and the sum of both is tested to be

equal to unity. In the studied case the finite width is incorporated by the superposition of

2N+1 planes waves with different k
q

corresponding to the channels discussed above. Each

channel with number n is associated with a k
q,n = n2π

W
and an angle to the surface normal

given by θ = arcsin( kq

k0

) with k0 = 2πω′. The maximum/minimum parallel component of the

wavevector is then given by ±N 2π

W
. For crystals with a length L > 1/k

q,max, the summed

transmission of all channels,
∑N

n=−N Tkq,n
, is supposed to be independent of k

q,max. For this

approach to be valid, a wide and short crystal must be assumed, so that the details of the

edges become less important.28

As a model system, we use cylinders (r/a = 0.225, ǫ = 14.0) in air (ǫ = 1.0) on a hexagonal

lattice. The crystal orientation is chosen, so a plane wave at perpendicular incidence propa-

gates along the ΓK direction, for which the Dirac point occurs in H-polarization (magnetic

field parallel to the cylinders). The corresponding band-structure, together with the trans-

mittance for H-polarization in the ΓK direction corresponding to θ = 0◦, is shown in Fig. 2.

The Dirac point occurs at ω′

D = 0.5294 in the band-structure.
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FIG. 2: (Color online) Photonic band structure for dielectric cylinders in air on a hexagonal

lattice with r/a = 0.225 and ǫ = 14.0. The arrow marks the Dirac point at ω′

D = 0.5294. For H-

polarization (magnetic field parallel to the cylinders) no propagating modes exist at that frequency

except for the one at the Dirac point. On the right side the transmittance for H-polarization in

the ΓK direction (θ = 0◦) is shown.

The dependence of the transmittance (sum over all propagating diffraction orders) on

the angle and frequency of the incident wave is shown in Fig. 3 for a spacing of ∆θ = 1◦.

The features of the band-structure, such as the stop band (ω′ ≈ 0.45), and the pseudo-

stop band around (ω′ ≈ 0.675) can be identified. Figure 3b enlarges the region around the

Dirac point for positive and negative angles. From the smallest width of the conical shaped

transmittance, the Dirac point can be estimated around ω′ ≈ 0.532. However, resonances,

due to the finite size, make a very precise determination more difficult and a better way will

be discussed later. In this case higher order diffraction orders do not contribute significantly

to the total transmittance. This is in contrast to the reflectance (not shown) where for

angles larger than 10–15◦ most energy is transferred in the ±1st diffraction order, depending

upon whether the angle on the incoming wave is positive (−1st) or negative (+1st). It should

be noted, in these plots individual angles cannot be assigned a channel number, since the

spacing is not equidistant in k
q
.

Due to linear dispersion relation around the Dirac point, the phase of a plane wave with

perpendicular incidence (in ΓK-direction) changes linearly with frequency, if phase changes

at the surfaces of the crystal are constant for all considered frequencies. The phase change

in the transmittance calculation, ∆ΦT, in a given frequency interval ∆ω′, is then equal to
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FIG. 3: (Color online) (a) Angular and frequency-dependence of the transmittance (sum over all

diffraction orders) through a structure consisting of 40 cylinder rows for H-polarization. θ = 0◦

corresponds to propagation in ΓK direction. The result is symmetric in the angle θ. (b) Enlarge-

ment around the Dirac point (ω′

D ≈ 0.532). The total transmittance, T, discussed later in the

paper, corresponds to a summation of the transmittance over all angles with θ = arcsin(nkq/k0)

n = −N, · · · , N (equidistant in kq not in θ) for a each frequency.

the product of the length times the change of the wavevector in the band-structure in the

same frequency interval (∆ΦT(∆ω′) = L∆k(∆ω′)). Although not shown, our numerical

results exhibit this behavior extremely well. The absolute phase can only be determined

up to an arbitrary but constant shift. As will be shown later, a precise determination of

the Dirac frequency is essential. However, since the band-structure and transmittance are

calculated by different methods, a small difference in the Dirac frequency is found and the

exact frequency for the transmittance calculations must be determined within the RCWA

method.
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FIG. 4: (Color online) Transmittance of the 1st channel with kq = 2π/W = 0.0013 for W=5000 over

frequency. At the Dirac point (ω′

D=0.5325) the transmittance is lowest for long structures.

This is possible by looking at the transmittance for a fixed k
q
, preferably close to zero,

and choosing the frequency for which this transmittance becomes the smallest for long

structures. At the Dirac point only the k
q
= 0.0 component propagates in long structures. In

Fig. 4 the length-dependent transmittance is plotted for different frequencies for k
q
= 0.00125

corresponding to the 1st channel with a width of W=5000. We determine the frequency for

the Dirac point to be ω′

D = 0.5325 for ±25 modes in the RCWA transmittance calculations.

Although the transmittance typically converges better than 1% with these numbers of modes,

small shifts in the frequencies still occur. Using only ±15 modes instead of ±25 changes

the optimal value for the Dirac frequency to 0.5318, corresponding to a shift of 0.13%. As

a comparison, the difference in the value from the band-structure (0.5294) corresponds to a

difference of 0.58%. It is visible from Fig. 4 that the frequency must be determined precisely

for large widths. A change in ∆ω′ of 0.0002 can turn the 1st channel from non-propagating to

propagating, changing the scaling behavior significantly. In the band-structure, this would

correspond to going away from the Dirac point into the conical region, where a larger range

of k
q
is available.

Using the determined Dirac frequency, we calculate the length- and width-dependence

of the transmittance (Fig. 5a). For a fixed width of W = 300, we use a different number of

channels corresponding to different k
q,max. Using more channels increases the transmittance

for short crystals, but, since channels with a large k
q
decay rapidly, the total transmittance

becomes independent of this quantity after a length of approximately 1/k
q,max.

28
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FIG. 5: (Color online) (a) Total transmittance
∑N

n=−N Tkq,n
for N=5, 20, and 80 with a fixed width

of W=300 corresponding to different kq,max and θmax. The length, after which the results are equal

in all cases, is determined by the smallest kq,max. (b) Normalized transmittance TL/W. The oscilla-

tions are caused by the finite size of the structure. Different curves belong to different widths. The

deviation of the black curve with the solid dots is due to the very narrow width. At approximately

40 unit cells, only the channel with kq,max=0 contributes with a constant transmittance. Hence the

increase in the rescaled transmittance.

According to the proposed scaling law, multiplying the total transmittance by a factor

L/W leads to a constant value.28 Our results in Fig. 5b are not constant but oscillate around a

value of approximately 0.36, slightly higher than the predicted value of 1/π.28 The oscillations

in the transmittance, which depend on the length and surface termination of the crystal,

are Fabry-Perot resonances caused by the finite length. They do not exhibit a smooth curve

since the sampling can only be completed in length steps of 1 unit cell and individual Fabry-

Perot oscillations are not resolved. They can be resolved by fixing the length and varying

the frequency in very small steps. Another deviation from the constant value can be seen
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FIG. 6: (Color online) Rescaled transmittance as a fuction of length for different frequencies

(N = 10, same θmax in all cases). We can distinguish 3 regimes in the plot. Far (ω = 0.1) away from

the Dirac point the rescaled transmittance increases linearly. Here, all channels contribute with

a high transmittance (≈ 1.0). Close to the Dirac point the slope is reduced, since only a fraction

of the channels contributes. At the Dirac point (ω = 0.532) the curve oscillates around 0.36. The

stop band region is not shown, but the curve would be close to zero for all lengths due to the

exponential decay.

in the curve for a width of 150 unit cells (curve with solid circles). For this width, a linear

increase in the normalized transmittance is visible, starting at a length of 40 unit cells. For

structures longer than this width, only the 0th channel contributes to transmittance with a

constant value. The linear dependence of TL/W is then caused by the multiplication of T

with the length of the sample.

For different frequencies, we can identify several different characteristic behaviors for

normalized transmittance (Fig. 6). At low frequencies in the first band (ω = 0.1), normalized

transmittance is given by a straight line with the same slope for all frequencies, since all

channels are contributing with a transmittance of about 100%. The total transmittance Ttotal

then corresponds to the number of channels. In the second band, the transmittance still

grows linearly with different slopes, but oscillates around an average value. In this case, some

of the channels are contributing and the total number of contributing channels determines

the slope. At the Dirac point, a value around 0.36 is obtained as discussed before. The

final regime is the stop band (not shown in the plot), where the normalized transmittance is

always close to zero and decaying, since the effect due to the exponential decay is stronger
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(a)
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FIG. 7: (Color online) (a): Total transmittance T =
∑

n Tkq,n
over length for different frequencies

(W=600,N=15). The three dark regions are the lower stop band (0.45), the Dirac point (0.5325)

and the quasi stop band (0.67). (b): Rescaled transmittance TL/W. In the stop band this value is

approximately zero; whereas, at the Dirac point the value oscillates around 0.36.

than the increase caused by multiplication with the length. In all examples the maximum

angle θ and the number of channels are fixed. The four different regimes are also visible in

Fig. 8, which shows the total transmittance (a) and the normalized transmittance (b) for a

wide range of frequencies over length.

A better understanding for the occurrence of these 4 regimes can be obtained by looking at

the length-dependent transmittance of the individual channels for two example frequencies in

Fig. 8. Firstly, we consider a frequency close to the Dirac point (Fig. 8a). For short crystals

up to about 100 unit cells, the number of propagating channels decreases and for longer

structures, nine channels contribute with a large transmittance. The rescaled transmittance

is TL/W. Hence, it increases linearly for a length exceeding 100 unit cells. At the Dirac
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(a)
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FIG. 8: (Color online) Length-dependence of the first ±10 channels for different frequencies. (a)

ω′ = 0.528 corresponds to a line with an intermediate slope in Fig. 6. (b) ω′ = 0.5325= ω′

D belongs

to the lowest line in Fig. 6. In both cases the length scale is 10 times longer than in the previous

graphs. The rescaled transmittance for lengths after which the number of propagating channels

stays constant (approx. 100 (250) in a (b)) exhibits the same behavior as the curve with solid dots

in Fig. 5b at large lengths.

point (Fig. 8b), all but the 0th channel are suppressed for long structures. In the region up

to a length of about 250 unit cells, the suggested scaling behavior is observed. Again, for

longer structures TL/W will increase linearly, due to the constant transmittance of the 0th

channel comparable to the black curve with solid dots in Fig. 5b.

Previously, it has been stated that the scaling of the transmittance is valid for lengths

larger than 1/k
q,max in the limit of W >> L. As discussed before, there also exists an upper

limit for the length for this scaling behavior, which has not been addressed in previous

publications. We determined this long length limit by comparing the ±1st channel to the

10
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FIG. 9: (Color online) Damping constant α = −ln(T1/T0)/L of the 1st channel with respect to the

0th channel for different widths. The highest curve corresponds to the structure with the smallest

width. The resonances are due to the finite length of the structure.

0th one. All channels with k
q
6= 0.0 decay exponentially at the Dirac point, since there

are no propagating states available in the band-structure similar to the case in the gap.

The propagating channels always contribute with a transmittance of approximate unity, so

ignoring the details of the transmittance caused by the Fabry-Perot oscillations, we can

express the total transmittance of all channels by

Ttotal = T0 + T1 + T2 + · · · = T + e−α1LT + e−α2LT + · · · (1)

with T on the order of 1. Since the 2nd and higher channels do not contribute signifi-

cantly, we can define the relative damping of the 1st channel with respect to the 0th as

α = −ln(T1/T0)/L, plotted for different widths in Fig. 9. As long as the transmittance

in the 1st channel decays, the damping constant increases until it saturates and becomes

constant.

To determine the maximum length for the 1/L scaling of the transmittance, the inverse

of the damping constant, given by the length for a suppression is 1/e, can be used as a

quantitative measure. This damping length is obtained by averaging the (length-dependent)

damping constant, once it has reached a constant value and then inverting the average. The

averaging procedure is required to reduce the impact of the Fabry-Perot resonances.

The results of this averaging are shown in Fig. 10 and exhibit a linear behavior. For

crystals with a very wide width, the saturated value is only reached for very long lengths.

Not using sufficiently long structures leads to a damping constant, which is still increasing;
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FIG. 10: (Color online) Damping length 1/α obtained by averaging the damping constant on the

left and inverting. If the crystal is not sufficiently long the damping constant does not reach

a constant value for very wide structures and the damping length deviates from linear behavior

(circles Lmax=1000, squares Lmax=10000).

hence, to an overestimation of the damping length and a deviation from the linear behavior.

From a linear fit, the slope can be obtained as 0.095, which gives a width to length ratio of

about 10:1, meaning the length limit of the W/L scaling of the transmittance is reached at

about 1/10 of the width. Identification of the upper limit is important, if one wants to study

disordered systems. In this case, the Dirac point may be shifted locally; hence, propagating

modes are available in regions where no modes were available before. Consequently, this

can lead to an enhanced transmittance in the vicinity of the Dirac point. If the channels

with k
q
6= 0.0 are suppressed less compared to 0th channel in the disordered case than in the

unperturbed structure, this will lead to a significant change in the damping length, even if

all channels experience changed due to disorder. Studying these quantities allows a better

understanding of the transmittance around the Dirac point in the case of disorder and offers

the possibility to discuss the open question whether disorder will increase or decrease the

transmittance in this region.28

In conclusion, we have presented detailed numerical calculations of the transmittance

in hexagonal two-dimensional Photonic Crystals close to the Dirac point. We found the

transmittance at the Dirac point is inversely proportional to the thickness of the sample.

A detailed dependence of this behavior on the individual channels is given. We give an

explanation and a criterion for an upper length limit of this behavior and relate it to the

width of the crystal. The dependence of the transmittance away from the Dirac point is

12



also examined. It was determined that the transmittance decays exponentially as expected

when the frequency lies in the gap. When the frequency lies in the band, not only the k
q
= 0

component is contributing to the transmittance for all lengths. The number of contributing

channels depends on the width and the distance from the Dirac point frequency.
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19 R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, Phys. Rev. B 73, 165310 (2006).

20 K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener,

Physics Reports 444, 101 (2007).

21 S. Raghu and F. D. M. Haldane (2006), arXiv:cond-mat/0602501.

22 F. D. M. Haldane and S. Raghu (2005), arXiv:cond-mat/0503588.

23 A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).

24 M. I. Katsnelson, Materials Today 10, 20 (2007).

25 A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Europhys. Lett. 79, 57003 (2007).

26 P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett. 98, 256801 (2007).

27 J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, Phys. Rev. Lett.

96, 246802 (2006).

28 R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, Phys. Rev. A 75, 063813 (2007).

29 M. I. Katsnelson, Eur. Phys. J. B 51, 157 (2006).

30 X. Zhang (2007), arXiv.org/0710.0682.

31 R. A. Sepkhanov and C. W. J. Beenakker (2007), arXiv.org/0712.1158v2.

32 G. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).

33 D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610 (1999).

34 L. Li, J. Opt. Soc. Am. A (1996).

35 L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).

36 L. Sheng and S. He, J. Opt. Soc. Am. A 19, 1021 (2002).

14


	Introduction
	Acknowledgments
	References

